Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Psych J ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38298162

RESUMEN

The attention network test (ANT) is a tool for assessing the executive, alerting, and orienting components of attention. However, conflicting findings exist regarding the nature and correlation between attention networks. This study aims to investigate the influence of eye movement time on the assessment of attention network efficiency. Forty male students, with an average age of 20.8 ± 1.3 years, participated in the study. The revised attention network test was conducted concurrently with the recording of the electrooculogram signal. The electrooculogram signal was used to estimate eye placement time on target stimuli. Considering eye movement time for calculating the score of each network was proposed as a novel method. The study explored the nature of attention networks and their relationships, and revealed significant effects for attention networks with and without considering the eye movement time. Additionally, a significant correlation is observed between the alerting and orienting networks. However, no significant correlation is found between attention networks using the proposed method. Considering eye movement time alters the assessment of attention network efficiency and modifies the correlation among attention networks.

2.
Exp Brain Res ; 242(1): 79-97, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37962638

RESUMEN

The attention networks test (ANT) is frequently utilized to evaluate executive, alerting, and orienting attentional components. Additionally, it serves as an activation task in neuroimaging studies. This study aimed to examine the relationship between attention networks and brain electrophysiology. The study enrolled 40 right-handed male students (age = 20.8 ± 1.3 years) who underwent the revised attention network test, while their electroencephalogram signals were recorded. The study aimed to explore the effects of attention networks and their efficiencies on brain electrophysiology. The results indicated that the P3 amplitude was modulated by the conflict effect in the central (p-value = 0.014) and parietal (p-value = 0.002) regions. The orienting component significantly influenced P1 and N1 latencies in the parietal and parieto-occipital regions (p-values < 0.006), as well as P1 and N1 amplitude in the parieto-occipital region (p-values = 0.017 and 0.011). The alerting component significantly affected P1 latency and amplitude in the parietal and parieto-occipital regions, respectively (p-value = 0.02). Furthermore, N1 amplitude and the time interval between P1 and N1 were significantly correlated with the efficiency of alerting and orienting networks. In terms of connectivity, the coherence of theta and alpha bands significantly decreased in the incongruent condition compared to the congruent condition. Additionally, the effects of attention networks on event-related spectral perturbation were observed. The study revealed the influence of attention networks on various aspects of brain electrophysiology. Specifically, the alerting score correlated with the amplitude of the N1 component in the double-cue and no-cue conditions in the parieto-occipital region, while the orienting score in the same region correlated with the N1 amplitude in the valid cue condition and the difference in N1 amplitude between the valid cue and double-cue conditions. Overall, empirical evidence suggests that attention networks not only impact the amplitudes of electrophysiological activities but also influence their time course.


Asunto(s)
Encéfalo , Orientación , Humanos , Masculino , Adulto Joven , Adulto , Orientación/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Electroencefalografía , Lóbulo Occipital , Electrofisiología , Tiempo de Reacción/fisiología
3.
J Med Signals Sens ; 4(4): 267-73, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25426430

RESUMEN

The aim of this study is to provide a control software system, based on Monte Carlo simulation, and calculations of dosimetric parameters of standard and wedge radiation fields, using a Monte Carlo method. GATE version 6.1 (OpenGATE Collaboration), was used to simulate a compact 6 MV linear accelerator system. In order to accelerate the calculations, the phase-space technique and cluster computing (Condor version 7.2.4, Condor Team, University of Wisconsin-Madison) were used. Dosimetric parameters used in treatment planning systems for the standard and wedge radiation fields (10 cm × 10 cm to 30 cm × 30 cm and a 60° wedge), including the percentage depth dose and dose profiles, were measured by both computational and experimental methods. Gamma index was applied to compare calculated and measured results with 3%/3 mm criteria. Gamma index was applied to compare calculated and measured results. Almost all calculated data points have satisfied gamma index criteria of 3% to 3 mm. Based on the good agreement between calculated and measured results obtained for various radiation fields in this study, GATE may be used as a useful tool for quality control or pretreatment verification procedures in radiotherapy.

4.
J Med Signals Sens ; 4(1): 10-7, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24696804

RESUMEN

Radiotherapy dose calculations can be evaluated by Monte Carlo (MC) simulations with acceptable accuracy for dose prediction in complicated treatment plans. In this work, Standard, Livermore and Penelope electromagnetic (EM) physics packages of GEANT4 application for tomographic emission (GATE) 6.1 were compared versus Monte Carlo N-Particle eXtended (MCNPX) 2.6 in simulation of 6 MV photon Linac. To do this, similar geometry was used for the two codes. The reference values of percentage depth dose (PDD) and beam profiles were obtained using a 6 MV Elekta Compact linear accelerator, Scanditronix water phantom and diode detectors. No significant deviations were found in PDD, dose profile, energy spectrum, radial mean energy and photon radial distribution, which were calculated by Standard and Livermore EM models and MCNPX, respectively. Nevertheless, the Penelope model showed an extreme difference. Statistical uncertainty in all the simulations was <1%, namely 0.51%, 0.27%, 0.27% and 0.29% for PDDs of 10 cm(2)× 10 cm(2) filed size, for MCNPX, Standard, Livermore and Penelope models, respectively. Differences between spectra in various regions, in radial mean energy and in photon radial distribution were due to different cross section and stopping power data and not the same simulation of physics processes of MCNPX and three EM models. For example, in the Standard model, the photoelectron direction was sampled from the Gavrila-Sauter distribution, but the photoelectron moved in the same direction of the incident photons in the photoelectric process of Livermore and Penelope models. Using the same primary electron beam, the Standard and Livermore EM models of GATE and MCNPX showed similar output, but re-tuning of primary electron beam is needed for the Penelope model.

5.
World J Nucl Med ; 11(2): 70-4, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-23372440

RESUMEN

In single photon emission computed tomography (SPECT), the collimator is a crucial element of the imaging chain and controls the noise resolution tradeoff of the collected data. The current study is an evaluation of the effects of different thicknesses of a low-energy high-resolution (LEHR) collimator on tomographic spatial resolution in SPECT. In the present study, the SIMIND Monte Carlo program was used to simulate a SPECT equipped with an LEHR collimator. A point source of (99m)Tc and an acrylic cylindrical Jaszczak phantom, with cold spheres and rods, and a human anthropomorphic torso phantom (4D-NCAT phantom) were used. Simulated planar images and reconstructed tomographic images were evaluated both qualitatively and quantitatively. According to the tabulated calculated detector parameters, contribution of Compton scattering, photoelectric reactions, and also peak to Compton (P/C) area in the obtained energy spectrums (from scanning of the sources with 11 collimator thicknesses, ranging from 2.400 to 2.410 cm), we concluded the thickness of 2.405 cm as the proper LEHR parallel hole collimator thickness. The image quality analyses by structural similarity index (SSIM) algorithm and also by visual inspection showed suitable quality images obtained with a collimator thickness of 2.405 cm. There was a suitable quality and also performance parameters' analysis results for the projections and reconstructed images prepared with a 2.405 cm LEHR collimator thickness compared with the other collimator thicknesses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...